
MTH 516/616: TOPOLOGY II
SEMESTER 2, 2015-16

1. Homology

1.1. Simplicial Homology.

(i) Motivation for homology.

(ii) n-simplices and ∆-complexes.

(iii) The free abelian group ∆n(X) generated by the n-simplices.

(iv) The boundary homomorphism ∂n : ∆n(X) → ∆n−1(X), defined

by

∂n(σ) =
∑
i

(−1)iσ|[v0, . . . , v̂i, . . . , vn].

(v) The composition ∂n∂n−1 = 0, and hence we have the chain complex

. . .→ ∆n+1(X)
∂n+1−−−→ ∆n(X)

∂n−1−−−→ ∆n(X)→ . . .→ ∆0(X)
∂0−→ 0.

(vi) The simplicial homology group H∆
n (X) = Ker ∂n/Im ∂n+1.

(vii) The simplicial homologies of S2, S1 × S1, RP 2, and the Klein

bottle.

1.2. Singular Homology.

(i) Singular n-simplices σ : ∆n → X.

(ii) The free abelian group Cn(X) of singular n-chains.

(iii) The boundary map ∂n(σ) =
∑
i

σ| [v0, . . . , v̂i, . . . , vn].

(iv) The composition ∂n∂n−1 = 0, and hence we have the chain complex

. . .→ Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−→ Cn−1(X)→ . . .→ C0(X)
∂0−→ 0.

(v) The singular homology group Hn(X).

(vi) Let X = tαXα, where the Xα are its path components. Then

Hn(X) ∼= ⊕αHn(Xα).

(vii) If X is nonempty and path-connected , then H0(X) ∼= Z.

(viii) If X is a point, then Hn(X) = 0 for n > 0 and H0(X) ∼= Z.
1
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(ix) The augmented chain complex

. . .→ C2(X)→ C1(X)→ C0(X)
ε−→ Z→ 0,

where ε is defined by ε(
∑

i niσi) =
∑

i ni.

(x) The reduced homology group H̃n(X) are the homology groups

associated with the augmented chain complex.

(xi) A continuous map f : X → Y induces a homomorphism

f∗ : Hn(X)→ Hn(Y ).

(xii) For the composed mapping X
g−→ Y

f−→ Z, we have (fg)∗ = f∗g∗.

(xiii) If f, g : X → Y are maps such that f ' g, then f∗ = g∗. Conse-

quently, (iX)∗ = iHn(X).

(xiv) IfX ' Y , thenHn(X) ∼= Hn(Y ). In particular, ifX is contractible,

then H̃n(X) = 0 for all n.

(xv) A continuous map f : X → Y induced a homomorphism

f∗ : Hn(X)→ Hn(Y ).

(xvi) If f, g : X → Y are continuous maps such that f ' g, then

f∗ = g∗.

(xvii) Suppose that f, g : X → Y be continuous maps such that f '
g(viaH). Let P : Cn(X)→ Cn+1(Y ) be the prism operator, which

is defined by

P (σ) =
∑
i

F ◦ (σ × iI)|[v0 . . . vi, wi, . . . , wn].

Then ∂P + P∂ = g# − f#.

(xviii) If X ' Y , then Hn(X) ∼= Hn(Y ) for all n.

(xix) Properties of exact sequences.

(xx) For a pair (X,A), the group of relative n-chains

Cn(X,A) = Cn(X)/Cn(A).

(xxi) Relative homology groups Hn(X,A).

(xxii) The boundary map ∂ : Hn(X,A)→ Hn−1(A).

(xxiii) The sequence of homology groups

. . .→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂−→ Hn−1(A)→ . . .

is exact.
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(xxiv) The sequence of reduced homology groups

. . .→ H̃n(A)
i∗−→ H̃n(X)

j∗−→ H̃n(X,A)
∂−→ H̃n−1(A)→ . . .

is exact.

(xxv) For the pair (Dn, ∂Dn),

Hi(D
n, ∂Dn) ∼=

Z, for i = n

0, otherwise.

(xxvi) For the pair (X, {x0}), where x0 ∈ X,

Hn(X, {x0}) ∼= H̃n(X).

(xxvii) Let (X,A,B) be a triple of spaces, where B ⊂ A ⊂ X. Then we

have the following long exact sequence of homology groups:

. . .→ Hn(A,B)→ Hn(X,B)→ Hn(X,A)→ Hn−1(A,B)→ . . .

(xxviii) If two maps f, g : (X,A)→ (Y,B) are homotopic through maps

of pairs (X,A)→ (Y,B). then f∗ = g∗.

(xxix) (Excision Theorem) Given subspaces Z ⊂ A ⊂ X such that

Z ⊂ A◦ , then the inclusion i : (X − Z,A− Z) ↪→ (X,A) induces

isomorphisms Hn(X − Z,A− Z)
i∗−→ Hn(X,A) for all n.

(xxx) Good pairs of spaces (X,A).

(xxxi) For good pairs of spaces (X,A), the quotient map q : (X,A) →
(X/A,A/A) induces an isomorphism

q∗ : Hn(X,A)→ Hn(X/A,A/A) ∼= H̃n(X/A),

for all n.

(xxxii) For good pairs (X,A), H̃n(X ∪ CA) ∼= Hn(X,A).

(xxxiii) For the pair (Dn, ∂Dn), we have

Hn(Dn, ∂Dn) = 〈[i∆n ]〉,

where i∆n is viewed as singular a n-cycle in Cn(Dn, ∂Dn).

(xxxiv) Regard Sn as a ∆-complex built from two n-simplices ∆n
1 and ∆n

2

with their boundaries identified. Then we have

Hn(Sn) = 〈[∆n
1 −∆n

2 ]〉,

where ∆n
1 −∆n

2 is viewed as singular n-cycle in Cn(Sn).
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(xxxv) If (X,A) is a good pair of spaces, then there is an exact sequence

of reduced homology groups

. . .→ H̃n(A)
i∗−→ H̃n(X)

j∗−→ H̃n(X/A)
∂−→ H̃n−1(A)→ . . . ,

where i : A ↪→ X is the inclusion map and j : X → X/A is the

quotient map.

(xxxvi) H̃i(S
n) ∼=

Z, for i = n

0, otherwise.

(xxxvii) (Brouwer’s fixed-point theorem) Every continuous map f : Dn →
Dn has a fixed point.

(xxxviii) If a CW complex X is the union of subcomplexes A and B,

then the inclusion (B,A ∩ B) ↪→ (X,A) induces isomorphisms

Hn(B,A ∩B)→ Hn(X,A) for all n.

(xxxix) If a wedge sum
∨
α of spaces is formed at base points xα ∈ Xα such

that each pair (Xα, xα) is good, then the inclusions iα : Hα ↪→∨
αXα induces an isomorphism

⊕α(iα)∗ : ⊕αH̃n(Xα)→ H̃n(∨αXα).

(xl) If nonempty open sets U ⊂ Rm and V ⊂ Rn are homeomorphic,

then m = n.

(xli) (Naturality Property) If f : (X,A)→ (Y, b) is a continuous map

of pairs, then the diagram

. . . −−−→ Hn(A)
i∗−−−→ Hn(X)

j∗−−−→ Hn(X,A)
∂−−−→ Hn−1(A) −−−→ . . .yf∗ yf∗ yf∗ yf∗

. . . −−−→ Hn(B)
i∗−−−→ Hn(Y )

j∗−−−→ Hn(Y,B)
∂−−−→ Hn−1(B) −−−→ . . .

is commutative.

(xlii) Let X be a ∆-complex, and A a subcomplex. Then the relative

homology H∆
n (X) can defined using the relative chains

∆n(X,A) = ∆n(X)/∆n(A).

(xliii) For the ∆-complex pair (X,A), there exists a long exact sequence

of homology groups

. . .→ H∆
n (A)

i−→ H∆
n (X)

j−→ H∆
n (X,A)

∂−→ H∆
n−1(A)→ . . . ,
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(xliv) Let φ∗ : H∆
n (X,A)→ Hn(X,A) be the canonical homomorphism

induced by the chain map φ : ∆n(X,A)→ Cn(X,A) sending each

n-simplex ∆n of X to its characteristic map σ : ∆n → X. Then

φ∗ is an isomorphism.

1.3. Cellular homology.

(i) The chain group CCW
n (X) = Hn(Xn, Xn−1), and the chain com-

plex

. . . CCW
n+1(X)

dn+1−−−→ CCW
n (X)

dn−→ CCW
n−1(X)→ . . . ,

where

dn(enα) =
∑
β

dαβe
n−1
β

and

dαβ = deg(Sn−1
α → Xn−1 → Sn−1

β )

that is the composition of the attaching map of enα with the quotient

map collapsing Xn−1 \ en−1
β to a point.

(ii) The cellular homology group is defined by

HCW
n (X) = Ker dn/Im dn+1.

(iii) If X is a CW complex, then:

(a) Hk(X
n, Xn−1) =

0 if k 6= n, and⊕
α〈[enα]〉 if k = n.

(b) Hk(X
n) = 0 for k > n.

(c) The inclusion i : Xn ↪→ X induces an isomorphism i∗ :

Hk(X
n)→ Hk(X), if k < n.

(iv) HCW
n (X) ∼= Hn(X).

1.4. Mayer-Vietoris Sequences.

(i) For a pair of subspaces A,B ⊂ X such that X = A◦ ∪B◦, there

is an long exact sequence of the form

. . .→ Hn(A∩B)
Φ∗−→ Hn(A)⊕Hn(B)

Ψ∗−→ Hn(X)
∂−→ Hn−1(A∩B) . . .→ H0(X)→ 0,

which is associated with the short exact sequence

0→ Cn(A ∩B)
Φ−→ Cn(A)⊕ Cn(B)

Ψ−→ Cn(A+ b)→ 0,
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where Φ(x) = (x,−x), and Ψ(x, y) = x+ y.

(ii) There exists a long exact sequence identical to the one above

involving reduced homology groups.

(iii) Viewing the Klein Bottle K as the union of two Mobius bands

identified along their boundaries, we have that

Hn(K) ∼=


Z, n = 0,

Z,⊕Z2 n = 1,

0, otherwise.

1.5. Homology with coefficients.

(i) For a fixed abelian group G, the abelian chain groups Cn(X;G) =

{
∑

i niσi : ni ∈ G and σi : ∆n → X}.
(ii) The relative chain groups Cn(X,A;G) = Cn(X;G)/Cn(A;G).

(iii) Both Cn(X;G) and Cn(X,A;G) form chain complexes, and the

homology groups of their associated homology groups with coeffi-

cients in G are denoted by Hn(X;G) and Hn(X,A;G) respectively.

(iv) When G = Z2, n-chains are simply sums (or maybe viewed as

unions) of finitely many singular n-simplices. Hence, this is the

most natural tool in the absence of orientation.

(v) Mayer-Vietros sequence and the Cellular homology generalise to

homology with coefficients.

(vi) If f : Sk → Sk has degree m, then f∗ : Hk(S
k;G)→ Hk(S

k;G) is

multiplication by m.

(vii) Let F be a field of characteristic 2. Then

Hn(RP n;F ) ∼=

F, 0 ≤ k ≤ n

0 otherwise.

(viii) Given an abelian group G and an integer n ≥ 1, the Moore space

M(G, n) is a CW - complex X satisfying

(a) Hn(X) ∼= G and H̃i(X), if i 6= n, and

(b) X is simply-connected if n > 1.

(ix) The Moore space X = M(Zm, n) is obtained by attached en+1 to

Sn by a degree m map.
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1.6. Applications of homology.

(i) The degree of a map f : Sn → Sn denoted by deg f , and its

properties.

(ii) Sn has a continuous tangent vector field iff n is odd.

(iii) For n even, Z2 is the only nontrivial group that can act freely on

Sn.

(iv) The local degree of a map f : Sn → Sn at a point xi denoted by

deg f |xi .
(v) deg f =

∑
i deg f |xi .

(vi) The map zk : S1 → S1 has degree k.

(vii) Constructing a map f : Sn → Sn of any given degree k.

(viii) If Sf : Sn+1 → Sn+1 is the suspension of the map f : Sn → Sn,

then degSf = deg f .

(ix) Hi(CP n) ∼=

Z for i = 0, 2, . . . , 2n

0 otherwise.

(x) Hi(RP n) ∼=


Z for i = 0 or i = n odd

Z2 for i odd, 0 < i < n

0 otherwise.

(xi) Let Sg denote the closed orientable surface of genus g. Then

Hi(Sg) ∼=


Z for i = 0, 2

Z2g for i = 1

0 otherwise.

(xii) Let Ng denote the closed nonorientable surface with g crosscaps.

Then

Hi(Ng) ∼=


Z for i = 0

Zg−1 ⊕ Z2 for i = 1

0 otherwise.

(xiii) The Euler Characteristic of a finite-dimensional CW complex X

having ci i-cells for 0 ≤ i ≤ n, is given by

χ(X) =
n∑
i=0

(−1)icn.
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(xiv) If X = Xn is a CW complex, then

χ(X) =
n∑
i=0

(−1)irankHn(X).

(xv) If X = Xn and Y = Y n are CW complexes such that X ≈ Y ,

then χ(X) = χ(Y ).

(xvi) If r : X → A is a retraction, then i∗Hn(A)→ Hn(X) induced by

the inclusion i : A ↪→ X is injective. Hence, we have a short exact

sequence

0→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)→ 0

that splits since r∗ ◦ i∗ = (iA)∗. Consequently,

Hn(X) ∼= Hn(A)⊕Hn(X,A).

(xvii) A K(G, 1) space X is a path-connected space with contractible

universal cover, and which satisfies π1(X) ∼= G.

(xviii) If a finite-dimensional CW complex is a K(G, 1), then the group

G = π1(X) is torsion-free.

(xix) If D is a subspace of Sn homeomorphic to Dk for some k ≥ 0,

then H̃i(S
n −D) = 0, for all i.

(xx) (Generalised Jordan Curve Theorem). If S is a subspace of Sn

homeomorphic to Sk for some k with 0 ≤ k ≤ n, then

H̃i(S
n − S) ∼=

Z for i = n− k − 1, and

0 otherwise.

(xxi) (Invariance of Domain) If a subspace X of Rn is homeomorphic

to an open set in Rn, then X is itself open in Rn.

(xxii) If M is a compact n-manifold and N is a connected n-manifold,

then an embedding M ↪→ N must be surjective.

(xxiii) An odd map f : Sn → Sn must have odd degree.

(xxiv) (Borsuk-Ulam Theorem) For every map g : Sn → Rn, there exists

a point x ∈ Sn such that g(x) = g(−x).

2. Singular Cohomology

(i) Motivation for cohmology.
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(ii) The cochain complex C∗ of free abelian groups

. . .← C∗n+1

δn+1←−− C∗n
δn←− C∗n−1 ← . . . ,

is the dual of the chain complex C

. . .→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → . . . ,

where for all i, C∗i = Hom(Ci, G) and δi = ∂∗i ,

(iii) The cohomology groups

Hn(C;G) = Ker δn+1/Im δn.

(iv) There exists a natural map h : Hn(C∗;G) → Hom(Hn(C), G),

which yields the following split short exact sequence

0→ Kerh→ Hn(C∗;G)
h−→ Hom(Hn(C), G)→ 0.

(v) There is a long exact sequence

. . .← B∗n
i∗n←− Z∗n ← Hn(C∗;G)← B∗n−1 ← . . .

associated with the short exact sequence

0← Z∗n
j∗n←− C∗n

δn←− B∗n−1 ← 0,

where i∗n and i∗ are the duals of the inclusions in : Bn ↪→ Zn,

and jn : Zn ↪→ Cn, respectively. This long exact sequence can be

expressed as the direct sum of (or can be decomposed to) the split

short exact sequences

0→ Coker i∗n−1 → Hn(C∗;G)
h−→ Hom(Hn(C), G)→ 0.

(vi) A free resolution FH of an abelian group H is an exact sequence

of free groups

. . .→ F2
f2−→ F1

f1−→ F0
f0−→ H → 0.

The dual of the free resolution is denoted by FH
∗.

(vii) A homomomorphism α : H → H ′ induces a chain map from

FH → FH′ . Furthermore, any two such chain maps are chain

homotopic.

(viii) For any two free resolutions FH and F ′H of H, there are canonical

isomorphisms Hn(FH
∗;G) ∼= Hn(F ′H

∗;G).
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(ix) Since every abelian group H has a free resolution of the form

0→ F1 → F0 → H → 0,

Hn(FH
∗;G) = 0, for n > 1, and Hn(FH

∗;G) depends only on H

and G, and is denoted by Ext(H,G).

(x) The group Ext(H,G) has the following properties.

(i) Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G).

(ii) Ext(H,G) = 0, if H is free.

(iii) Ext(Zn, G) ∼= G/nG.

(xi) Since there is a free resolution FH when H = Hn−1(C)

0→ Bn−1
in−1−−→ Zn−1 → Hn−1(C)→ 0,

its dual FH
∗

0← B∗n−1

i∗n−1←−− Z∗n−1 ← Hn−1(C)∗ ← 0

yields the isomorphisms

Coker(i∗n−1) ∼= Ext(Hn−1(C), G).

(xii) (Universal Coefficient Theorem for Cohomology) If C is a chain

complex of free abelian groups, then the cohomology groups

Hn(C;G) of the cochain complex C∗ are determined by the split

exact sequence

0→ Ext(Hn−1(C), G)→ Hn(C∗;G)
h−→ Hom(Hn(C), G)→ 0.

Consequently, we have the isomorphisms

Hn(C∗;G) ∼= Ext(Hn−1(C), G)⊕ Hom(Hn(C), G).

(xiii) Let the homology groups Hn = Fn ⊕ Tn and Hn−1 = Fn−1 ⊕ Tn−1

of a chain complex C be finitely generated abelian groups. Then

Hn(C∗;Z) ∼= Tn−1 ⊕ (Hn/Tn).

(xiv) If a chain map between two chain complexes of free abelian groups

induces an isomorphism of homology groups, then it induces iso-

morphisms of cohomology groups with any coefficient group G.



MTH 516/616: TOPOLOGY II SEMESTER 2, 2015-16 11

2.1. Cup product.

(i) Let R be a commutative ring with identity. For cochains ϕ ∈
Ck(X;R) and ψ ∈ C`(X;R), the cup product ϕ^ψ is the cochain

whose value on a singular simplex σ : ∆k+` → X is given by the

formula

(ϕ^ ψ)(σ) = ϕ(σ|[v0, . . . , vk])ψ(σ|[vk, . . . , vk+`]).

(ii) For ϕ ∈ Ck(X;R) and ψ ∈ C`(X;R),

δ(ϕ^ ψ)(σ) = δϕ^ ψ + (−1)kϕ^ δψ.

(iii) The cup product has the following properties.

(a) The cup product of two cocycles is a cocycle.

(b) The cup product of a cocycle and a coboundary in any order

is a coboundary.

(c) Hence the cup product induces a map at the level of cohomol-

ogy

Hk(X;R)×H`(X;R)
^−→ Hk+`(X;R),

which is both associative and distributive.

(iv) For a map f : X → Y , the induced maps f ∗ : Hn(Y ;R) →
Hn(X;R) satisfy

f ∗(α^ β) = f ∗(α)^ f ∗(β).

(v) For a commutative ring R with identity, H∗(X;R) = ⊕kHk(X;R)

forms a commutative ring with identity. Furthermore, H∗(X;R)

is a graded ring under ^.

(vi) For a graded ring A with decomposition A = ⊕k≥0Ak, to indicate

that a ∈ A lies in Ak, we write |a| = k.

(vii) H∗(RP n;Z2) ∼= Z2[α]/(αn+1), and H∗(RP∞;Z2) = Z2[α], where

|α| = 1. In the complex case, H∗(CP n;Z) ∼= Z[α]/(αn+1), and

H∗(CP∞;Z) ∼= Z[α], where |α| = 2.

(viii) The inclusions iα : Xα ↪→ tαXα induce the isomorphism

H∗(tαXα;R) ∼=
∏
α

H∗(Xα;R).
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(ix) For basepoints xα ∈ Xα, if (Xα, xα) form good pairs, then we have

that

H̃∗(∨αXα;R) ∼=
∏
α

H̃∗(Xα;R).

(x) If R is a commutative ring, then

α^ β = (−1)k`β ^ α,

for all α ∈ Hk(X,A;R) and β ∈ H`(X,A;R).

(xi) CP 2 is not homotopically equivalent to S2 ∨S4, even though they

have isomorphic homology and cohomology groups.

2.2. Orientations and homology.

(i) The local orientation of an n-manifold M at a point x is a choice

of generator µx of the group the infinite cyclic group Hn(M,M −
{x}) ∼= Z.

(ii) Every manifold M has a two-sheeted covering space

M̃ = ∪x∈M{µx, µ−x}.

(iii) The covering space M̃ →M can be imbedded in a larger covering

space MZ →M given by

MZ = ∪x∈M{0, µ±x, µ±2x, . . .},

where µkx ↔ k ∈ Z ∼= Hn(M |x).

(iv) A continuous map M → MZ of the form x 7→ αx ∈ Hn(M |x) is

called a section of covering space.

(v) An orientation for M is a section such that αx is a generator for

each x. If there exists an orientation for M , then M is said to

orientable.

(vi) An R-orientation for M , where R is a commutative ring with

identity, is a section of the covering space MR that assigns to each

x ∈M , a generator αx ∈ Hn(M |x;R).

(vii) Let M be an n-manifold. Then:

(a) M̃ is orientable, and
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(b) if M is connected, then M is orientable if, and only if M̃ has

two components. In particular, M is orientable, if its simply-

connected, or more generally, if π1(M) has no subgroup of

index 2.

(viii) An orientable manifold is R-orientable for all R, while a nonori-

entable manifold is R-orientable if, and only if R contains a unit

of order 2. In particular, every manifold is Z2-orientable.

(ix) Let M be a manifold of dimension n, and let A ⊂M be a compact

subset. Then:

(a) Hi(M |A;R) = 0 for i > n, and a class in Hn(M |A;R) is zero

if, and only if its image in Hn(M |x;R) is zero for all x ∈ A.

(b) If x 7→ αx is a section of the covering space MR →M , then

there exists a unique class αA ∈ Hn(M |A;R) whose image in

Hn(M |x;R) is a αx for all x ∈ A.

(x) Let M be a closed connected n-manifold, Then:

(a) If M is R-orientable, the map Hn(M ;R)→ Hn(M |x;R) ∼= R

is an isomorphism for all x ∈M .

(b) IfM is notR-orientable, the mapHn(M ;R)→ Hn(M |x;R) ∼=
R is injective with image {r ∈ R | 2r = 0} for all x ∈M .

(c) Hi(M ;R) = 0, for i > n.

(xi) An element [M ] ∈ Hn(M ;R) whose image in Hn(M |x;R) is a

generator for all x is called a fundamental class.

(xii) If M is a closed connected n-manifold, the torsion subgroup of

Hn−1(M ;Z) is trivial if M is orientable and Z2 if M is orientable.

2.3. Cap product and Poincaré Duality.

(i) For an arbitrary space X and a coefficient ring R, we define an

R-linear cap product map

_ : Ck(X;R)× C`(X;R)→ Ck−`(X;R)

for k ≥ `, by sending a singular k-simplex σ : ∆k → X and a

cochain ϕ ∈ C`(X;R) to the singular (k − `)-simplex

σ _ ϕ = ϕ(σ|[v0, . . . , v`])σ|[v`, . . . , vk].

(ii) The cap product has the following properties:
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(a) For any σ ∈ Ck(X;R) and ϕ ∈ C`(X;R),

∂(σ _ ϕ) = (−1)`(∂σ _ ϕ− σ _ δϕ).

(b) Cap product of a cycle and a cocycle is a cocycle.

(c) Cap product of a cycle and a coboundary is a boundary.

(d) Cap product of a boundary and a cocycle is a boundary.

(e) Thus, there is an induced cap product

Hk(X;R)×H`(X;R)
_−→ Hk−`(X;R)

that is R-linear in each variable.

(f) Given a map f : X → Y ,

f∗(α)_ϕ = f∗(α_ f ∗(ϕ)).

(iii) (Poincaré Duality for closed manifolds) IfM is a closedR-orientable

n-manifold with fundamental class [M ] ∈ Hn(M ;R), then the map

D : Hk(M ; r) → Hn−k(M ; r) defined by D(α) = [M ] _ α is an

isomorphism for all k.

(iv) Let Ci
c(X;G) be the subgroup of Ci(X;G) consisting of all cochains

ϕ : Ci(X)→ G that are supported by a compact subset Kϕ ⊂ X.

The cohomology groups H i
c(X;G) of this subcomplex are called

cohomology groups with compact support.

(v) Let Xc = {K ⊂ X |K is compact}, then

Ci
c(X;G) =

⋃
K∈Xc

Ci(X,X −K;G).

(vi) For K,L ∈ Xc such that K ⊂ L , the inclusion K ↪→ L induces

inclusions Ci(X,X −K;G) ↪→ Ci(X,X − L;G).

(vii) Consequently, {H i(X,X −K;G) |K ∈ Xc} forms a directed sys-

tem of groups, and we have

H i
c(X;G) = lim−→

K∈Xc

H i(X,X −K;G).

(viii) Suppose that X = ∪α∈JXα, where J is a directed set. If for each

compact K ⊂ X, there exists α = α(K) ∈ J such that K ⊂ Xα,

then we have

Hi(X;G) ∼= lim−→Hi(Xα;G).
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(ix)

H i
c(Rn;G) ∼=

G, for i = n, and

0, otherwise.

3. Homotopy Groups

(i) For a pair (X, x0), we define

πn(X, x0) := {[f ] | f : (In, ∂In)→ (X, x0)}.

(ii) Alternatively, we can define

πn(X, x0) := {[f ] | f : (Sn, s0)→ (X, x0)}.

(iii) When n ≥ 2, we define an operation + in πn(X, x0) by:

(f + g)(s1, . . . , sn) =

f(2s1, s2, . . . , sn), s1 ∈ [0, 1/2]

g(2s1 − 1, s2, . . . , sn), s1 ∈ [1/2, 1],

and [f ] + [g] := [f + g].

(iv) (πn(X, x0),+) is an abelian group.

(v) Let X be a path-connected space. Given a path γ : I → X from

x0 to x1, we can associate to each f : (In, ∂In)→ (X, x0) a map

fγ : (In, ∂In)→ (X, x1) satisfying the following properties

(a) (f + g)γ ' fγ + gγ.

(b) fγη ' (fη)γ.

(c) fe ' f , where e = ex0 .

(vi) Hence there is an induced homomorphism

Φγ : (πn(X, x1),+)→ (πn(X, x0),+)

given by Φ([f ]) = [fγ] which is an isomoprhism.

(vii) A covering space p : (X̃, x̃0)→ (X, x0) induces isomorphisms p∗ :

πn(X̃, x̃0)→ πn(X, x0) for all n ≥ 2. Consequently, πn(X, x0) = 0

for n ≥ 2 whenever X has a contractible universal cover.

(viii) Let (Xα, xα)α∈J be an arbitrary collection path-connected spaces.

Then the projection maps pα :
∏

β∈J(Xβ, xβ)→ (Xα, xα) induces

the isomorphism

πn(
∏
α∈J

(Xα, xα)) ∼=
∏
α∈J

πn(Xα, xα).
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(ix) For a pair of spaces (X,A) with a basepoint x0 ∈ A and n ≥ 1,

the relative homotopy groups (πn(X,A, x0),+) are defined by

πn(X,A, x0) = {[f ] | f : (In, ∂In, Jn−1)→ (X,A, x0)},

where Jn−1 = ∂In − In−1. Alternatively, it is defined by

πn(X,A, x0)={[f ] | f : (Dn, Sn−1, s0)→ (X,A, x0)},

where the addition is done via the map c : Dn → Dn ∨ Dn

collapsing Dn−1 ⊂ Dn to a point.

(x) A map f : (Dn, Sn−1, s0)→ (X,A, x0) represents zero in πn(X,A, x0)

if, and only if it is homotopic rel Sn−1 to a map with image con-

tained in A.

(xi) For a pair of spaces (X,A) with a basepoint x0 ∈ A, the sequence

. . .→ πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A, x0)→ . . .

is exact.

(xii) For a triple of spaces (X,A,B) with B ⊂ A ⊂ X and a basepoint

x0 ∈ B, the sequence

. . .→ πn(A,B, x0)
i∗−→ πn(X,B, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A,B, x0)→ . . .

is exact.

(xiii) (Whitehead Theorem) Suppose that a map f : X → Y between

connected CW complexes induces isomorphisms f∗ : πn(X) →
πn(Y ) for all n. Then:

(a) f is homotopically equivalent to Y , and

(b) furthermore if X is a subcomplex of Y , then X is a deforma-

tion retract of Y .


